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Abstract

Time-derivative approaches to analyzing sedimentation velocity data have proven to be highly successful and have now been used
routinely for more than a decade. For samples containing a small number of noninteracting species, the sedimentation coefficient distri-
bution function, g (s*), traditionally has been fitted by Gaussian functions to derive the concentration, sedimentation coefficient, and dif-
fusion coefficient of each species. However, the accuracy obtained by that approach is limited, even for noise-free data, and becomes even
more compromised as more scans are included in the analysis to improve the signal/noise ratio (because the time span of the data
becomes too large). Two new methods are described to correct for the effects of long time spans: one approach that uses a Taylor series
expansion to correct the theoretical function and a second approach that creates theoretical g (s*) curves from Lamm equation models of
the boundaries. With this second approach, the accuracy of the fitted parameters is approximately 0.1% and becomes essentially inde-
pendent of the time span; therefore, it is possible to obtain much higher signal/noise when needed. This second approach is also com-
pared with other current methods of analyzing sedimentation velocity data.
� 2006 Elsevier Inc. All rights reserved.
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The time-derivative or dc/dt method for sedimentation
velocity analysis, pioneered by Walter Stafford at the Bos-
ton Biomedical Research Institute [1,2], has proven to be
very useful and currently is used by a large fraction of lab-
oratories performing sedimentation velocity experiments.
One important advantage of this method is that it removes
the time-invariant systematic noise in the raw scans (base-
line distortions and window effects) algebraically in a man-
ner that is model independent. A second important feature
of the time-derivative method is that it is possible to fit
individual peaks in the g (s*) distribution to Gaussian func-
tions and thereby derive the concentration (from the peak
area), the sedimentation coefficient (from the center posi-
tion), and the diffusion coefficient (from the width of the
0003-2697/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.ab.2006.04.053

* Fax: +1 805 388 7252.
E-mail address: jphilo@mailway.com.
Gaussian) for individual species [3,4]. With both the sedi-
mentation and diffusion coefficients determined, one also
can obtain the molecular mass from their ratio using the
Svedberg equation. This can provide a simple means to
answer questions about stoichiometry (is the primary spe-
cies a monomer, dimer, or tetramer?) and homogeneity
(is the g (s*) distribution consistent with a single species?).

Another significant advantage of the time-derivative
approach is that it is rapid, easy to use, and intuitive,
and it quickly provides estimates of the precision of the
estimated sedimentation coefficients and molecular masses.
That is undoubtedly a major reason for its continued use
and popularity despite the emergence of other data analysis
approaches for analyzing mixtures that can be superior in
parameter accuracy and/or signal/noise ratio and that
may be more fundamentally rigorous. One such alternate
analysis approach is whole boundary modeling, where mul-
tiple raw scan files are globally fitted using solutions of the
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1 The program description and instructions for downloading can be
found at www.jphilo.mailway.com/dcdt+.htm.
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Lamm equation, as pioneered by Holladay in 1980 [5]. A
number of software packages implementing that approach
are now available for desktop personal computers, includ-
ing SVEDBERG by Philo (in 1994) [6], LAMM by Behlke
and Ristau (in 1997) [7], ULTRASPIN by Demeler and
Saber (in 1998) [8], SEDFIT by Schuck and coworkers
(in 1998) [9], and SEDANAL by Stafford and Sherwood
(in 2004) [10]. Many of these programs also now provide
more complex models, including reversible associations
and/or solution nonideality effects. The time-derivative
approach is complementary to those methods, rather than
necessarily directly competing with them, and often is used
as a first-stage data analysis to suggest models and/or pro-
vide starting parameters for those other approaches. Simi-
larly, there are also newer methods for deriving
sedimentation coefficient distributions, including the
least-squares g* (s) method [11], the c (s) method [12], and
the improved van Holde–Weischet method [13]; however,
in the latter two of these methods, the diffusion informa-
tion is removed and therefore so they cannot provide
molecular mass information about multiple components.

Although the fitting of g (s*) distributions using Gaussi-
ans to obtain molecular properties certainly is quite useful,
it still has some significant shortcomings. The purpose of
this article is to propose and test some revised algorithms
to address those problems. One issue is the limited accuracy
of the derived molecular parameters. As discussed in some
detail in a previous article [14], even for theoretically per-
fect data for a single species, there are errors of up to
approximately 8% in the diffusion coefficient and mass
for moderate-sized proteins (�150 kDa) and systematic
errors of 2–10% in the apparent sedimentation coefficients
for smaller proteins ([ 40 kDa). Such errors in apparent
diffusion coefficient or mass are trivial if one needs to know
only whether the protein is a monomer or a dimer, but they
are quite significant for purposes such as assessing homoge-
neity of protein pharmaceuticals. Similarly, the errors in
sedimentation coefficients can be sufficiently large to pre-
clude use for purposes such as estimating axial ratios [15].

In practice, a more significant problem arises as more
and more scans are used in the analysis to obtain sufficient
signal/noise ratio, increasing the time span from the first
to last scan used in the analysis. The longer time span
makes the Dc/Dt curve calculated from each pair of scans
a much poorer approximation of the true derivative, dc/
dt, and that produces broadening of the peaks. As dis-
cussed in detail previously [14], this effect often can lead
to errors in diffusion coefficients for single species of
15% or more. These peak-broadening effects are particu-
larly troubling when trying to resolve multiple species
both because one needs the highest possible signal/noise
to do this and because the degree of broadening will be
much greater for the higher mass components. In previous
work, it has been demonstrated that when trying to
resolve properties for minor species such as covalent or
irreversible oligomers, it can be quite advantageous to
use prior knowledge to reduce the number of fitting
parameters [6,16]. For example, we have found it to be
useful to constrain the mass of the oligomer to be an
appropriate integer multiple of the monomer mass. This
approach, however, is also seriously compromised by the
peak-broadening effects.

In this article, two new approaches to reduce these lim-
itations of the current methods are described. First, an
approach to reducing the effects of large time spans by cal-
culating correction terms derived from a Taylor series
approach is briefly described, and its limitations are dis-
cussed. Then a second approach is described based on
directly simulating data for all scans used in the analysis.
It is shown that this works much better than the Taylor ser-
ies approach. This second approach can improve the accu-
racy of the derived hydrodynamic parameters by more than
an order of magnitude and permit an improvement in sig-
nal/noise ratio of up to approximately 10-fold while main-
taining an accuracy of approximately 0.1% for the
hydrodynamic parameters.

Materials and methods

Sedimentation velocity data were obtained using absor-
bance scans at 280 nm in a Beckman Optima XL-A analyt-
ical centrifuge. Numerical simulations of sedimentation
velocity experiments were done using the Claverie finite ele-
ment method as described previously [14]. The calculation
of dc/dt and g (s*) distributions was done using a new ver-
sion of a Visual Basic .NET program named DCDT+ that
implements the new algorithms described below.1 Compar-
isons were done using version 1.13 of DCDT+, version
9.3b of SEDFIT, and version 4.1b of SEDPHAT [9]. Non-
linear least-squares fitting within DCDT+ employed a
modified Gauss–Newton method, as described previously
[6]. The fitting of Gaussians to least-squares g* (s), or ls–
g* (s), distributions from SEDFIT was done using version
7.0 of ORIGIN (OriginLab, Northampton, MA, USA).

Results

In the standard approach to fitting g (s*) distributions,
each species is fitted using a Gaussian function. The use
of a Gaussian is based on the Faxén approximate solution
to the Lamm equation [4]. The Faxén solution does not
provide a highly accurate description of the concentration
distribution in the cell, c (r, t), and this is one reason why
fitting to Gaussians does not always give accurate values
for the diffusion coefficient. In practice, however, the num-
ber of scans and range of time needed to obtain sufficient
signal/noise ratio will generally produce systematic errors
from peak broadening that are significantly larger than
those related to the fact that the peaks are not exactly
Gaussian in form. Indeed, the use of time-derivative

http://www.jphilo.mailway.com/dcdt+.htm


2 Abbreviations used: IGG, immunoglobulin G; F, Fick (where
1 F = 10�7 cm2 s�1); TRAP, trp RNA-binding attenuation protein.
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analysis has generally required a fairly severe trade-off
between using more scans to improve signal/noise and a
loss of accuracy due to peak broadening. Can this situation
be improved?

Approach A: Using Taylor series to reduce the effects of
large time spans (peak broadening)

Reducing the loss of accuracy at longer time spans first
requires understanding the source of the errors. It is impor-
tant to recall that the Stafford algorithm [2] involves
subtracting scans in pairs, where for a total of 2N scans,
scan 1 is paired with scan N + 1, scan 2 is paired with scan
N + 2, and so forth. In general terms, the inaccuracies arise
because as the time span between the scans in each pair
grows longer (and hence the boundary movement increas-
es), the approximation that Dc/Dt @ dc/dt becomes less and
less accurate. Let us assume that the time interval between
scans is a constant value Dt. Then for each scan pair, the
algorithm calculates that at each radial position r,
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This expansion makes it apparent that the errors are relat-
ed to the higher derivatives of oc/ot and that the first-order
errors are proportional to the square of the time span NDt.
Furthermore, this suggests that we should be able to explic-
itly correct for these errors during fitting by using Eq. (3) in
calculating dc/dt and g (s*) for each species.

There is actually one additional significant (but smaller)
source of error related to large time spans, however, that
arises when we average together the data from each pair of
scans to calculate an overall average data set for dc/dt or
g (s*). This averaging is done not at constant values of radius
but rather at constant values of s* = (1/x2t) ln (r/rm). Thus,
the average experimental data are calculated from
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where to is the overall mean time for this set of scans and r*

is the radial position corresponding to the value of s*. If we
again use a Taylor series expansion around the mean time
to, Eq. (4) becomes
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where Eq. (4) is used to calculate Dc/Dt at to and the o3c/ot3

derivative in Eq. (5) must be evaluated at constant s* (rath-
er than at constant r as in Eq. (4)).

Code was written to implement Eqs. (4) and (5) using
the analytical time derivative of the modified Fujita–
MacCosham function [16] to evaluate oc/ot, with the
higher derivatives being calculated numerically. The
resulting dc/dt versus s* results were either used directly
to fit the experimental average dc/dt data or fed into
the usual iterative procedure within the Stafford algo-
rithm to calculate the theoretical g (s*) distributions used
in fitting.

Tests at large time spans

Simulated data sets covering large time spans were con-
structed to evaluate how well this Taylor series correction
is able to derive the correct molecular parameters and
loading concentration despite the inevitable broadening of
the peaks. Stafford proposed a ‘‘rule of thumb’’
(www.bbri.org/dcdt/Rule.pdf) to calculate the maximum
time span between the first and last scans used in the anal-
ysis, Dtmax, before substantial broadening occurs. This rule
has been revised over time, but currently the value to be
used when the data are being fitted to derive diffusion coef-
ficients or masses is given by

Dtmax ¼
80 � tffiffiffiffiffi

M
p
� ðRPM=1000Þ

; ð6Þ

where t is the arithmetical mean time of the first and last
scans (in s), M is the mass (in kDa), and RPM is the rotor
speed. This formula assumes that the boundary is near the
midpoint of the cell, a partial specific volume, �v, of
0.725 ml/g, and a solvent density, q, of 1 g/ml.

Because this maximum time span is directly related to
the sample molecular mass, for any given set of scans, this
rule can also be used to calculate the maximum molecular
mass that can be present in the sample without significant
broadening, Mmax:

Mmax ¼
80 � t

Dt � ðRPM=1000Þ

� �2
0:275

ð1� �v � qÞ : ð7Þ

This Taylor series correction has been tested against simu-
lated data sets corresponding approximately to ovalbumin,
immunoglobulin G (IGG),2 or an approximately 75 kDa,
s = 5 S, D = 6 Fick (F) species, while systematically vary-
ing the number of scans used in the analysis. The behavior
for the different masses is similar, so only the results for the

http://www.bbri.org/dcdt/Rule.pdf
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ovalbumin simulations (s = 3.55 S, D = 7.89 F) are
presented. Fig. 1 summarizes the relative accuracy obtained
for s, D, M, and the loading concentration, co, from fits to
either the dc/dt or g (s*) data using the current algorithm or
with this Taylor series correction approach. These graphs
show that the new approach does indeed substantially im-
prove the accuracy of the fitted parameters. Over the range
up to M/Mmax = 8, where the curves are fairly linear, the
improvement in accuracy is approximately 25-fold for s,
50-fold for D, 40-fold for M, and 20-fold for co. For values
of M/Mmax greater than approximately 10, the Taylor ser-
ies correction becomes less effective and the errors grow sig-
nificantly more rapidly; nonetheless, an accuracy for D and
M of approximately 3% can be maintained out to approx-
imately M/Mmax = 20, whereas holding that level of preci-
sion with the standard algorithm requires
A

B

C

D

Fig. 1. Variation in parameter errors with the time span (number of scans)
used in the analysis (plotted vs. the ratio of true mass to Mmax as
calculated using Eq. (7)). The errors are calculated relative to the values
obtained using simulations of very rapid scans (no peak broadening).
These results are from noise-free simulations for ovalbumin (�42 kDa) at
60,000 rpm with scans recorded every 210 s. Analyses were done starting
with 4 scans chosen when the boundary is near the midpoint of the cell and
then adding equal numbers of earlier and later scans up to a total of 32
scans. Panel A shows the percentage error in sedimentation coefficient
from fitting to either g (s*) (closed symbols) or dc/dt (open symbols) data
using either the standard algorithms (solid connecting lines) or the new
algorithms with Taylor series correction (dotted lines). Panels B, C, and D
give the relative errors in diffusion coefficient, mass, and loading
concentration, respectively.
M/Mmax < 0.8. Fig. 2A illustrates the range of scans corre-
sponding to this approximately 3% level of precision with
and without the Taylor series correction. Fig. 2B shows
the large variation among the dc/dt curves that arises over
the long time span usable with the Taylor series approach,
including large changes in amplitude and peak width as
well as small shifts of the peak position.

Holding accuracy over much larger time spans should
permit significant increases in signal/noise ratio without
loss of accuracy. Assuming a constant scan rate, the sig-
nal/noise should increase approximately as N3/2 or equiva-
lently as (M/Mmax)3/4, so that by allowing M/Mmax to
increase 20- to 50-fold while maintaining equivalent accu-
racy, the Taylor series correction theoretically should per-
mit increases in signal/noise by factors of 9–19. Another
benefit of a larger time span is that this also increases the
upper limit of sedimentation coefficients covered in the
analysis (allowing coverage of more species), even when
the midpoint of the range remains fixed.

However, it should be noted that accuracy of the fitted
parameters is not the only criterion for a ‘‘good’’ fitting
procedure. Particularly for multispecies fits, it is also quite
A

B

Fig. 2. (A) Simulated velocity data for ovalbumin. The six heavy lines
show the maximum range of scans that allows 3% accuracy of D or M

values with the standard algorithms (somewhat under the maximum to
comply with the rule of thumb). The 24 solid lines show the range that still
allows 3% accuracy using the Taylor series correction method. The
additional 8 dotted curves show the full range covered in Fig. 1. (B) dc/dt

curves from 24 scans.



A

B

(Svedbergs)

Fig. 3. (A) The g (s*) data (solid line) from 32 scans of the ovalbumin
simulation (the full range shown in Fig. 2A), corresponding to
M/Mmax = 42 in Fig. 1, are overlaid with the fit to those data using the
Taylor series corrections (dotted line). Note that although the fitted
parameters are still fairly close to the correct values (e.g., the relative error
in D is 16%), the shape of the fitted curve deviates significantly from that
of the experimental one. (B) Data and fit for 16 scans but without the
Taylor correction. Although the error in fitted parameters is actually
higher than in panel A (e.g., the relative error in D is 21%), the shape of
the fitted curve is quite similar to that of the actual g (s*) distribution.

3 See www.analyticalultracentrifugation.com/lsgofs_distribution.htm.
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important that the theoretical g (s*) curves accurately
match the shape of the experimental ones. Unfortunately,
in the regime above M/Mmax = 20, even though the errors
in D and M may be acceptable, the shape of the fitted
curves begins to deviate significantly from that of the
experimental ones, as illustrated in Fig. 3. Without a good
match in shape between experimental and fitted curves for
single species, the resolution and reliability of multispecies
fits would be severely compromised.

Approach B: Extending the time span through direct

simulation of the corresponding whole boundaries

Although this Taylor series correction approach clearly
provides some significant improvements, it would be desir-
able to reduce the effects of large time spans even further,
particularly with regard to obtaining theoretical curves that
accurately match the shape of the experimental ones. To do
this, it seemed best to directly mimic the data processing
applied to the raw data. That is, the idea is to generate
theoretical scans (signal vs. radius) corresponding to the
actual times of the experimental scans and then to replicate
the data processing used on the raw data to obtain a corre-
sponding theoretical curve for either g (s*) or the average
dc/dt data. To obtain high-quality theoretical sedimenta-
tion boundaries, a very accurate approximate solution to
the Lamm equation described by Behlke and Ristau [17]
was chosen. The actual function used is the first three terms
in Eq. 28 of that article, that is, the terms that describe the
moving boundary. This function was shown to give errors
for sedimentation coefficient of less than 0.2%, errors for D

or M of less than 0.5%, errors for proteins of 2 kDa or
greater, and errors of only 0.1% or less for all parameters
for proteins larger than 10 kDa (the range where dc/dt
analysis usually is applied) [17].

This approach does indeed result in significantly better
accuracy for fitted parameters when using long time spans
than does the Taylor series correction approach. Indeed,
with this approach the returned parameters are nearly inde-
pendent of the time span. For example, when applied to the
ovalbumin simulations used to generate Fig. 1, even at the
longest time spans covered there (M/Mmax = 42), the abso-
lute errors in s, D, M, and co are only �0.01%, 0.06%,
�0.06%, and 0.01%, respectively, for fitting to either the
dc/dt or g (s*) data. That is, with this approach, the errors
due to all sources, over any group of scans within the full
range shown in Fig. 2, are completely negligible compared
with the precision of any real experiment.

Using this algorithm, it is actually possible to use the full
span from the time the meniscus region is just cleared until
the plateau region is about to disappear (Fig. 4A). Such a
large time span leads to rather extreme broadening of the
dc/dt curves and saturation of their amplitude (Fig. 4B)
and, consequently, a severely distorted g (s*) distribution
(Fig. 4C). Nonetheless, the fitted parameters maintain
excellent accuracy, with absolute errors for all parameters
of less than 0.06%. Furthermore, the shape of the theoret-
ical g (s*) curve (or of the dc/dt curve [not shown]) is an
excellent match for the experimental data, with maximum
residuals of less than 0.08% of the peak amplitude.

Another approach that can be used to calculate g (s) dis-
tributions using fairly broad time spans is the ls–g* (s)
method developed by Schuck and coworkers and imple-
mented in SEDFIT. It has been shown that these ls–g* (s)
distributions can also be fitted as Gaussians, at least when
the time span is narrow [11]. How does this ls–g* (s)
approach compare with approach B? Table 1 summarizes
results from both methods when applied to 6, 12, 18, or
24 scans from the simulation shown in Fig. 2. The range
up to 24 scans corresponds approximately to the
recommended maximum3 for ls–g* (s) of two to three times
the six to eight scans that normally would be used with
the dc/dt method. These results show that the ls–g* (s)
distribution systematically underestimates the true

http://www.analyticalultracentrifugation.com/lsgofs_distribution.htm


A

B

C

Fig. 4. Example of the very wide time span that can be used with the
whole boundary simulation algorithm (approach B) while still maintaining
excellent accuracy. (A) Simulated velocity data for IGG (s = 6.2 S,
D = 3.9 F, co = 1 fringe), with every other scan shown. (B) Corresponding
dc/dt curves, with every other curve shown. (C) Corresponding g (s*) data
(circles) and fitted curve (line), with every fifth point shown. The returned
values from the fit are s = 6.1998 S, D = 3.913 F, and co = 0.99995 fringe.

Fig. 5. Least-squares g* (s) analysis of 24 scans from the simulation for
pure ovalbumin shown in Fig. 2, which incorrectly indicates sample
heterogeneity. The open circles show the ls–g* (s) distribution, and the
solid line is the fit of those data as two Gaussians (shown as dashed or

Table 1
Comparison of results from fitting the least-squares g* (s) distributions
from SEDFIT to a Gaussian versus fitting g (s*) data using approach B for
a different number of scans from the ovalbumin simulation shown in Fig. 2

Number of
scans used in
the analysis

Results from
Gaussian fits to
ls–g* (s)

Results from
fitting g (s*) using
approach B

6 s = 3.497 S [�1.5%]a s = 3.549 S [�0.0%]
Db = 7.472 F [�4.9%] D = 7.900 F [+0.1%]
M/Mo

c = 1.0359 [+3.6%] M/Mo = 0.9986 [�0.1%]
co = 1.0084 [+0.8%] co = 1.0004 [+0.0%]

12 s = 3.509 S [�1.1%] s = 3.549 S [�0.0%]
D = 7.656 F [�3.0%] D = 7.899 F [+0.1%]
M/Mo = 1.0187 [+1.8%] M/Mo = 0.9987 [�0.1%]
co = 1.0198 [+2.0%] co = 1.0003 [+0.0%]

18 s = 3.525 S [�0.7%] s = 3.549 S [�0.0%]
D = 7.734 F [�2.0%] D = 7.898 F [+0.1%]
M/Mo = 1.0130 [+1.3%] M/Mo = 0.9989 [�0.1%]
co = 1.0218 [+2.2%] co = 1.0002 [+0.0%]

24 s = 3.538 S [�0.3%] s = 3.550 S [�0.0%]
D = 7.652 F [�3.0%] D = 7.894 F [+0.1%]
M/Mo = 1.0277 [+2.8%] M/Mo = 0.9993 [�0.1%]
co = 1.0197 [+2.0%] co = 1.0001 [+0.0%]

Note. The group of scans chosen was symmetric around the time the
boundary reached the middle of the cell (keeping the mean time for
the group fixed as the number of scans increased). The true values from
the simulation were s = 3.55 S, D = 7.89 F, and co = 1 fringe.

a Values in square brackets are percentage errors (rounded to nearest
tenth).

b Diffusion coefficients were calculated from the width of the fitted
Gaussian using the mean x2t value for the scans.

c Apparent mass (from the s/D ratio) relative to the true value.
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sedimentation coefficient by up to 1.5% when only a few
scans are used and produces a 2–5% underestimate of the
diffusion coefficient throughout this range of scans.4 The
loading concentration is overestimated by 1–2%. The accu-
racy of approach B is better by one to two orders of mag-
nitude with a worst case error of 0.1% in any parameter.
Perhaps more significant is the fact that for 24 scans the
ls–g* (s) distribution falsely implies that the sample is heter-
ogeneous. As can be seen in Fig. 5, the ls–g* (s) distribution
shows a false half-peak extending from 0.8 S down to 0.1 S
(the lower limit allowed in the analysis). Moreover, even if
that feature is recognized as a data analysis artifact and
ignored, there is still a distinct shoulder on the left side
4 Note that the errors in D and M will be significantly larger (>10%) if
the calculations are done using the harmonic mean time (the standard
value used in the dc/dt algorithms) rather than the simple mean that was
employed here.

dotted lines).
of the main peak, one that can actually be fitted as second
Gaussian component centered at 1.96 S, as shown in the
figure.



Table 2
Fits of dc/dt data from simulations for an IGG sample (1 AU loading
concentration) containing 5% of a trimeric aggregate (s = 10.54 S,
D = 2.21 F)

Number of Results for minor Results for minor
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One of the useful properties of fitting individual peaks in
g (s*) distributions is that it is possible to limit the range of
sedimentation coefficients for the fit to exclude species that
are not of interest. It is difficult to impose similar limits in
whole boundary modeling methods because the fitting
region for such methods normally spans a radial region
within the cell and the radial values that correspond to
any particular sedimentation coefficient are, of course, dif-
ferent for each scan used for whole boundary modeling.
One real experiment that illustrates the utility of this
approach was analysis of the trp RNA-binding attenuation
protein (TRAP), a protein known to form tightly associat-
ed 11-mer ring structures both in crystals [18] and in
solution [19]. The sample of TRAP from Bacillus stearo-
thermophilus used in this experiment (a demonstration
run at a workshop) also contained aggregates or larger
structures sedimenting at approximately 8 to 14 S. By lim-
iting the fit to the central portion of the major peak (as
shown in Fig. 6) the influence of any minor components
on the derived properties for the major component will
be minimized. This fit returns a molecular mass for this
complex of 90.8 kDa [95% confidence, 88.0–93.6 kDa],
which corresponds to 11.0 [10.7–11.4] times the 8.242-
kDa monomer sequence mass, exactly as expected.

An alternative approach that can be used for analyzing
samples containing species that are not of interest is the so-
called hybrid discrete/continuous model in SEDPHAT,
where the species not of interest are modeled as a continu-
ous distribution. When that model was applied to this
TRAP experiment, the mass returned for the complex
was 86.1 [84.7–87.0] kDa, corresponding to a stoichiometry
of 10.44 [10.28–10.55]. Thus, that approach suggests that
Fig. 6. Analysis of the stoichiometry of the major component of a sample
of the TRAP from B. stearothermophilus. Because this sample contains
aggregates or larger assemblies (this is evident from the tail on the right-
hand side of the main peak), the fitting was limited to sedimentation
coefficients corresponding to the central portion of the main peak, as
indicated by the vertical dotted lines. The fitted major component is shown
as the cross-hatched area. That fit shows that this major species is an 11-
mer, as expected [18].
the complex is 10-mer rather than 11-mer, although 11-
mer is not ruled out. Furthermore, when using that
approach in SEDPHAT the computation of the confidence
interval required 8.5 h, even though only 100 rounds of
Monte Carlo simulation were used rather than the recom-
mended 1000 rounds, compared with only approximately
1 s using approach B.

The ability to use more scans without losing accuracy
can be quite helpful, particularly for detecting minor com-
ponents or when the signal/noise ratio is low. For example,
simulations were done for an IGG sample containing 5% of
a trimer aggregate run at 45,000 rpm using absorbance
optics (1 OD loading concentration). At the fastest scan
rate possible when running three samples simultaneously,
even using only four scans (the minimum) to compute
g (s*) results in significant broadening of the trimer peak
(and low signal/noise). Thus, when using the conventional
algorithms, and even by fitting to the dc/dt data (which are
more accurate [14]), as shown in Table 2, it is likely that
this aggregate would be mistakenly identified as a dimer
rather than as a trimer. With this new algorithm, however,
the minor component can be consistently assigned as a
trimer, and this can be done with increasing statistical con-
fidence as the number of scans is increased. If the full data
range of this same simulation is fitted using the c (s) method
in SEDFIT, the proportions and sedimentation coefficients
scans used in
the analysis

component from
standard analysis

component using
approach B

4 D = 2.61 F [2.06–3.19]a D = 2.31 F [1.68–3.22]
M/Mo

b = 2.56 [2.03–3.15] M/Mo = 2.83 [2.03–3.89]
s = 10.48 S [10.37–10.59] s = 10.48 S [10.36–10.59]
5.05%c [4.62–5.48] 5.02% [4.43–5.62]

6 D = 3.09 F [2.69–3.51] D = 2.39 F [1.92–2.98]
M/Mo = 2.27 [1.97–2.58] M/Mo = 2.77 [2.23–3.47]
s = 10.53 S [10.46–10.60] s = 10.52 S [10.45–10.60]
4.99% [4.72–5.26] 4.97% [4.62–5.32]

8 D = 3.80 F [3.49–4.13] D = 2.44 F [2.05–2.87]
M/Mo = 1.92 [1.76–2.08] M/Mo = 2.72 [2.31–3.23]
s = 10.55 S [10.50–10.60] s = 10.53 S [10.48–10.59]
5.02% [4.84–5.20] 4.96% [4.74–5.19]

12 ND D = 2.25 F [1.88–2.65]
M/Mo = 2.96 [2.51–3.54]
s = 10.54 S [10.50–10.58]
4.87% [4.73–5.01]

Note. The scan interval was 210 s (roughly the fastest possible scan rate
when running three samples). To give a realistic noise level, random noise
of 0.005 OD rms was added to the simulated data.

a Values in square brackets are 95% confidence intervals.
b Apparent mass of the minor component relative to that obtained for

the major component in this analysis.
c Fraction of minor component (apparent loading concentration relative

to total for major + minor component).



Fig. 7. Application of approach B and c (s) analysis to monoclonal
antibody samples at a very low concentration (1.2 lg/ml). (A) The g (s*)
distribution for a highly homogeneous sample obtained using 6 scans, the
maximum allowed by the rule of thumb. (B) The distribution for this same
sample obtained using 20 scans along with the theoretical fit as a single
species using approach B. (C) The c (s) distribution for a degraded sample
that contains approximately 20% total minor components at approxi-
mately 4, 5, and 9 S.
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for the major and minor components are returned with
high accuracy. However, if that c (s) distribution is trans-
formed to a c (M) distribution, or if the c (M) distribution
is fitted directly, the mass of the minor component (the tri-
mer) is returned as 2.22 times that of the major component.
Thus, if either of those approaches is used, the trimer could
easily be mistaken as a dimer. The discrete species model in
SEDPHAT was also applied to this simulation. That
approach returned an apparent mass for the minor compo-
nent of 2.38 times that of the major component [95% con-
fidence, 2.37–2.39] and thus also failed to correctly identify
the minor component as a trimer rather than a dimer.
Moreover, obtaining the best fit using SEDPHAT required
145 s versus only 3 s using DCDT+. Calculation of the
confidence intervals took 7 s in DCDT+; doing this using
only 100 Monte Carlo rounds in SEDPHAT (rather than
the recommended 1000 rounds) took 950 s.

This antibody mixture example also illustrates another
important point. Although approach B does ensure that
the returned hydrodynamic parameters are accurate inde-
pendent of the number of scans, N, it cannot counteract
the peak broadening that still occurs. Because of that peak
broadening, the precision of the D or M values improves
only quite slowly as N increases once significant peak
broadening begins (much more slowly than the theoretical
N3/2 dependence for the signal/noise ratio of the g (s*) or
dc/dt curves).

Approach B has also been tested in real experiments for
samples at very low concentrations. Aliquots of a homoge-
neous monoclonal antibody were run at concentrations of
approximately 35, 2.3, and 1.2 lg/ml with scanning at
230 nm. With the standard algorithms, even using only 6
scans will violate the rule of thumb (Eq. (6)), and for the
lowest concentration sample (0.012 total absorbance,
<0.5 lg total protein) the signal/noise ratio with 6 scans
only barely permits discerning that there is a peak around
6 S (Fig. 7A). Using approach B with 20 scans, however,
we obtain fivefold better signal/noise (Fig. 7B) and by fit-
ting obtain a sedimentation coefficient of 6.37 [6.29–6.46]
S and a mass of 170 [124–233] kDa, consistent with the
expected value of approximately 150 kDa for a monomer.
The full time span of this same experiment was also ana-
lyzed using the discrete species model in SEDFIT. That
approach gave similar best fit parameters of 6.32 S and
135 kDa. However, the 95% confidence interval returned
for the molecular mass by SEDFIT was 28–1369 kDa;
thus, that method was unable to confirm that this sample
is indeed a monomer.

Perhaps more significant, an experiment was done at
1.2 lg/ml using a degraded antibody sample that contains
approximately 20% total minor components at approxi-
mately 4, 5, and 9 S, that is, species that will not be well
resolved from antibody monomer. The c (s) distribution
from SEDFIT for this sample, shown in Fig. 6C, does
not resolve those minor components and gives only a single
broad peak. The standard time-derivative analysis for this
degraded sample using 6 or 8 scans does imply a rather low
apparent mass of 60–80 kDa, suggesting that the boundary
is broader than expected due to some sort of heterogeneity.
However, given the low signal/noise ratio and the known
systematic shifts to lower mass estimates with increased
time span when using standard time-derivative analysis,
the true heterogeneity in this material would likely be
missed. In contrast, using approach B, we can be more than
99% confident that the apparent mass is too low to be con-
sistent with the known monomer mass and, therefore, that
some other species must be present.

Discussion

Although the Taylor series approach to minimizing
errors associated with long time spans works fairly well,
approach B is significantly better at longer time spans
and produces theoretical curves that match the experimen-
tal data more accurately. The primary drawback to
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approach B is that theoretical boundaries must be simulat-
ed for every scan and every data point in the distribution;
thus, it becomes fairly computationally intensive when the
number of scans is high, particularly for interference data.
However, this computational burden certainly is not
intractable. For example, the current implementation
requires approximately 2 s per iteration (�12 s for conver-
gence) for a two-species fit to g (s*) derived from 50
interference scans using a 2-GHz Pentium IV. Thus,
approach B seems much superior to approach A overall;
consequently, only approach B will be implemented in
future program releases.

One aspect of using longer time spans that has not yet
been discussed is how that affects the estimated errors on
the dc/dt and g (s*) data and, hence, whether to use these
error estimates as weighting values for the fits. The error
estimates for individual data points are derived from the
variations between the dc/dt curves from all of the scan
pairs, a procedure that works well when the dominant
noise is random noise from the optical systems. However,
when the time span grows large, there are large systematic
variations among the dc/dt curves, as is evident in Figs. 2B
and 4B. These systematic variations can lead to gross over-
estimates of the error bars on individual points (often worst
near the top of a peak in the distribution) and, consequent-
ly, false underweighting of such points during a weighted
fit. Therefore, in the current work, nonweighted fits have
been used; indeed, we have found that the results are
considerably less accurate if weighted fits are used.

An alternative approach to weighting fits to g (s*)
distributions is to calculate theoretical weights based on a
reasonable assumption that the noise in the dc/dt data is
uniform with sedimentation coefficient. The transform
from dc/dt to g (s*) involves division by the sedimentation
coefficient. These theoretical weights take this into account
and assign low weights to the data at low sedimentation
coefficients, which are indeed always significantly noisier.
This approach makes theoretical sense and seems to work
well, and it too will be provided in future program releases.
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